Künstliche Intelligenz und Maschinelles Lernen in der Praxis

Alle reden über “Maschinelles Lernen”, "Neuronale Netze", "Künstliche Intelligenz" und "Deep Learning - doch wie diese Techniken genau in der Praxis funktionieren und eingesetzt werden, erfahren Sie in diesem weiterführenden openHPI Kurs.

In diesem vierwöchigen Gratis-Kurs können Jugendliche und andere Interessierte ohne Programmier-Erfahrung und technisches Hintergrundwissen lernen, wie Machine Learning Projekte in der Praxis umgesetzt werden können. Wir wollen dabei das Basiswissen aus dem Kurs “Künstliche Intelligenz und Maschinelles Lernen für Einsteiger” weiter vertiefen und Ihnen ein Gefühl für die Chancen und Herausforderungen von Machine Learning Projekten in der Praxis vermitteln. Dafür betrachten wir mehrere konkrete Anwendungsfälle - unter anderem die Erkennung von Gebärdensprache aus Bildern und die Stimmungsanalyse von Zeitungsartikeln. Geleitet wird der Kurs von den Masterstudenten Johannes Hötter und Christian Warmuth.

October 6, 2021 - November 3, 2021
Language: Deutsch

Course information

Im Einstiegskurs “Künstliche Intelligenz und Maschinelles Lernen für Einsteiger” wurden bereits Grundlagen zum Thema Maschinelles Lernen und Künstliche Intelligenz vermittelt. In diesem Folgekurs wollen wir nun die praktische Umsetzung dieser Thematik beleuchten und Ihnen Herausforderungen und Chancen im Umgang mit realen Daten und Anwendungsfällen vermitteln.

Die Kursleiter Johannes Hötter und Christian Warmuth werden hierbei das erlernte Wissen vertiefen und in Teilen ergänzen. Im Fokus stehen jedoch die interaktiven und realen Anwendungsfälle. Wir werden hierbei alle Schritte eines realen datengetriebenen Projektes behandeln und erklären - von der ersten Sicht auf die Daten, über das Training des jeweils verwendeten ML-Modells bis hin zur Ergebnisanalyse und Interpretation.

Für den Kurs wird keine Programmiererfahrung vorausgesetzt, da keine eigene Programmierung nötig sein wird - die gezeigten Programmierbeispiele werden von den Kursleitern umgesetzt. Natürlich können aber diejenigen, die gerne im Kurs programmieren möchten, unsere Lösungen nachvollziehen, unsere Lösungen selbst ausführen und eigene Herangehensweisen entwickeln. Tiefergehende Mathematik-Kenntnisse werden ebenfalls nicht vorausgesetzt. Die Kenntnis der Inhalte des Kurses “Künstliche Intelligenz und Maschinelles Lernen für Einsteiger” wird vorausgesetzt. Falls Sie bisher nicht am Kurs teilgenommen haben, können Sie diesen im Selbststudium absolvieren.

Zielgruppe

Der Onlinekurs richtet sich an Schülerinnen und Schüler von Oberschulen sowie auch an interessierte Erwachsene ohne Programmiererfahrung und ohne technisches Hintergrundwissen.

Kursstruktur

  • Woche 1: Wiederholung wichtiger Konzepte und praktisches Projekt über die Vorhersage von Wohnungspreisen
  • Woche 2: Zweites praktisches Projekt über Vorschläge neuer Filme und hierfür wichtige Theorie
  • Woche 3: Drittes Anwendungsfall: Stimmungsanalyse in Twitter-Nachrichten
  • Woche 4: Erkennung von Gebärdensprache-Bildern und Übersetzung in Text als viertes praktisches Projekt

Arbeitsaufwand

Für das Durcharbeiten von Lehr-Videos, Selbsttests, Hausaufgaben und Prüfungen sowie für die Diskussion des Stoffs im Kursforum mit den anderen Lernenden und dem Kursleiter-Team sollten die Teilnehmenden von einem Zeitaufwand von 3 bis 6 Stunden pro Woche ausgehen.

Hinweis auf weitere Kurse zur Thematik

Beachten Sie auch unseren openHPI-Kurs „Praktische Einführung in Deep Learning für Computer Vision“. Hierin geht es um die Frage, wie man eigenhändig neuronale Netze anlegen und für Anwendungen künstlicher Intelligenz einsetzen kann, um dem Computer das „Sehen“ beizubringen.

Go to external course

External course

This course is not running on Lernen.cloud, but on an external learning platform. When following the link to this featured course, you will leave the Lernen.cloud website. You might need an dedicated user account on the external platform to be able to enroll to the course.

Go to external course

This course is offered by

Johannes Hötter

Johannes Hötter is in his third semester of the master's program in Data Engineering at the Hasso Plattner Institute. Previously, he studied Business Informatics at the Bonn-Rhein-Sieg University of Applied Sciences. For the past four years, Johannes has specialized in the development of self-learning programs in the areas of language and image processing as well as in the context of business application systems. Johannes has founded two startups with other fellow students at HPI: The student AI consultancy path2.ai, and the software startup onetask.ai, with which he won the HPI Business Plan Competition 2020.

Christian Warmuth

Christian Warmuth is a student of the master program Data Engineering at the Hasso Plattner Institute. Christian completed his bachelor's degree in Mannheim in the field of business informatics in cooperation with SAP. After Christian spent several months in Silicon Valley, he developed a fascination for the subject area and has been dealing with the topic of Machine Learning for several years in his private life as well as in his professional and university environment.